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e Introduction e In this paper we consider the Korteveg-de Vries (KdV) equation
in the following form (cf. [1], Eq. 1.18)

Opu+ audpu + B O2u =0 (1)

where v := u(x,t) and «, 8 € R. Numerical solving of Eq. (1) by the finite difference
method was intensively studied in the literature (see book [1] and its bibliography).
In so doing, a number of explicit and implicit difference schemes were derived and
used for numerical construction of various solutions to (1).
In our talk we consider the Cartesian grid with spacings 7 := t,,41 — ¢, and
h := z;41 — z; and present two new implicit schemes for Eq. (1) with O(72, h?)
and O(72, h?) approximations. The schemes were generated by our algorithmic
approach [2] which is based on combination of the methods of finite volumes, nu-
merical integration and difference elimination by means of Grébner bases. Then we
compare, on the exact soliton solution, numerical behavior of these schemes with
that of some classical schemes of same order of approximation used in the literature
and show that our schemes provide substantially better numerical accuracy.
e Classical schemes with O(72, h?) approximation e The explicit scheme [1],

Eq.1.80
n+1 n—1 aT n n n BT n n n n 2
Ui =up T (“i+1 - Ui—1) e (Ui+2 = 2uhy + 2u — Ui—2) N©)
where the standard notation u} := u(t,,z;) for the grid function is used. This
scheme is stable for
2h3 h3
T < = 0.384—.
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The implicit scheme [1], Eq.1.96
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e Classical schemes with O(72, h*) approximation e The explicit scheme ([1],
Eq.1.82)

ot
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b (@
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whose stability condition is given by
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The implicit scheme [1], Eq.1.84
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+ g (53 = 8t + 1800 — 1303 4 80 — ) 4

(ufy g —8ufy +13uf, | — 13uf_| +8uf 5 —uf 3)).

e A new scheme with O(72, h?) approximation e It is obtained by the straightfor-
ward extension of the approach of paper [3] to equation (1). First, we convert (1)
into the integral form

f; (—%u2 — ﬁum) dt +udr =0 (6)

valid for any simply connected integration contour I'. Second, we chose the rect-
angular integration contour shown in Fig. stencil as a "control volume". Then we

n—+1 o

n .
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F1GURE 1. First integration contour for Eq. (6).
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add to (6) the integral relations

Tj+1 Tj+2
/ Up de = u(t,zj11) — u(txj),/ Uge dx = ug(t, T 42) — uz(t, ). (7)

Zj Zj

To approximate the contour integral, we apply the trapezoidal rule. For nu-
merical approximations of the integral relations we apply the trapezoidal rule for
the integration of u, and the midpoint rule for the integration of u,,. Thereby,
Egs. (6) and (7) take the form
« on 271,—‘,—1 on 27L+1
[—5 (u j U —uT i, —u j+2) -
-

(] ™ s~ t)] D4 TG ] 2n=0, ()

n n _.n o n . _ n o
[uzj+1+uzj]~ = UG~ U Uiy 2h =g 0 — U

2 i
To use linear difference elimination of u, and u,, from system (8), and hence the
Maple package LDA (Linear Difference Algebra) [4], we introduce the new function

«
F = §u2 and chose an elimination ranking > such that u >~ F' > u, > u,,. Then

computation of a differenceGrobner basis of the ideal generated by the left-hand
sides of difference polynomials in (8) and extraction from the basis an equation
that does not contains u, and u, yields the following difference scheme

U?Jrl - u_? (0% on+1 on+1 on mn
T LCa Tty R (R |
B +1 +1 +1 +1 9)
T [(uffy —2uf ) +2ut) —ufhy) +

+ (uf iy — 2u;-’+1 +2uj_ — u}’d)} =0.

This scheme is an analog of the famous Crank-Nicolson scheme for the heat equa-
tion.

e A new scheme with O(72, h?) approximation e Choose now the integration
contour I' in (6) shown in Fig. 2 with the indentation h/4 along to the x—direction.
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FIGURE 2. Second integration contour for Eq. (6).

Using at a fractional point relations

o f; 1
fixs/a = fjr1+ fj%hfj T (fj+2 +8fj41— f3)/8,
(10)
fiva — fir2 1

Jit11/a = fi+s — en  an (—fi+a +8fj43 + fi42)/8.
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we rewrite (6), (7) in the following form
[ () + 80+t + (-2 s s -
— (W% g+ 8U g — U]y 0) /8 — (P + 8u? - 2?:41)/8) -
— B ((—taa] + Bzl 1 + Usalro) /84 (—Usay T + Buaa i1 + um}le)/S -

- (um?+2 + Buga g — uarx?+4)/8 (um;i}l + 8“%?1_?} - m?ﬁ)/S))]
3h
+1 _
i + [U?-H — U] o =0.
[Uz?.u + uz?] 5= UF g = U, Uy 2h = Ul — gy (11)
Elimination the grid functions u, and w,, from (11) gives the difference scheme

n+1 n
Uj - Uj _ o 2n+1 8 2n+1
T agp [\ +2 “

+ (U2?+2 - 8”2?+1 + 8U2;171 — U2;L72):| +
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ﬂ +1 +1 +1 +1 +1 11
16h3 [(ufs — 8ujfy +13ufy — 13uj™y + 8ul™y —ujty) +

(u}L+3 = 8uf o + 13uj, ) — 13uj_y +8uj_, — u?,;;)] =0

Numerical results

Our numerical analysis of schemes (2)—(5), (9) and (12) was done with the Python
package SciPy (http:\\scipy.org). as a benchmark, we used the exact one-soliton
solution to (1)
2k3
u(@,t) = cosh(ky (x — 4k?t))?

with @« = 6, § = 1 and k; = 0.4. In so doing, we fixed h = 0.25 and considered
the solution in interval —50 < z < 50 with periodic boundary conditions (cf. [1],
p.49). The numerical inaccuracy was estimated by the Frobenius norm (|| Al F).

For the implicit schemes (9) and (12) we applied linearization

2 2 2 2 2 2
Vi1 = Vg1 — Vi + 0 = (Vg1 — V&) (Vg1 + V) + U R Vg1 - 20k — v
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